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Recall the basic formulation of Ol

Ol for a scalar (analysis):
I =T, +w( —-T,) O<w<l1

2
o)
Optimal weight to minimize the analysis errors: w = d

o, +0°



Recall the basic formulation of Ol

Ol for a scalar (analysis):
I =T, +w( —-T,) O<w<l1
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Optimal weight to minimize the analysis errors: w = ———+—
o, +0,
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Ol for a vector: Xi = MXi,

x; =x; +K(y; - Hx;)

K=PH [HP’H +R|

P’ =[I-KH|P’

Pb = 6Xb L SXZ 6Xb =X, — X,

In Ol P’ is statistically pre-estimated and constant in time.
Is this a good approximation?



Ol and Kalman Filter for a scalar

Ol for a scalar: T,t)=MT,t_,); o,=(+a)o. = %62 = const
- W
9,
o, +0;
T,(t)=T,@)+wT,(t,)-T,() 0<w<l

w= . 0. =(1-w)o,



Ol and Kalman Filter for a scalar

Ol for a scalar: 1,¢)=MT.(t_); o =(1+a)’ =Lo-j = const

— W

o,
o, +0.
T.(t)=T,t)+wT,t)-T,t) 0<w<l

w= ;0. =(1-w)o,

Kalman Filter
fora scalar: T,(t)=MT.(t_); o.=(Lo )Lo,); L=dM/dT
62
b .
w= 2 27
O, +GO
T.(t)=T,t)+wT t)-T,t)) 0<w<l

o =(1-w)o;

Now the background error variance is forecasted using the
linear tangent model and its “adjoint”.



“Errors of the day” computed with the Lorenz 3-variable
model: compare with rms (constant) error
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»Not only the amplitude, but also the structure of B is constant in 3D-Var/Ol

» This is important because analysis increments occur only within the subspace

spanned by B

o =(z,—2z)
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“Errors of the day” obtained in the reanalysis
(figs 5.6.1 and 5.6.2 in the book)

1996 06 500 mb RMS Z—inc West US vs East US

1958 06 500 mb RMS Z=ine West US vs East US

»Note that the mean error went down from 10m to 8m because of
improved observing system, but the "errors of the day” (on a synoptic time
scale) are still large.

»In 3D-Var/Ol not only the amplitude, but also the structure of B is fixed
with time




Flow independent error covariance
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»|n Ol(or 3D-Var), the scalar error correlation between two points in the
same horizontal surface is assumed . (p162 in
the book)




Typical 3D-Var error covariance
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»In Ol(or 3D-Var), the error correlation between two mass points in the
same horizontal surface is assumed homogeneous and isotropic.(p162

in the book)



Suppose we have a 6hr forecast (background) and new observations

The 3D-Var Analysis doesn’t know
about the errors of the day

Observations ~1057 d.o.f. @ __Background \~10%# d.o.f.
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With Ensemble Kalman Filtering we get perturbations pointing
to the directions of the “errors of the day”

Observations ~1057 d.o.f. @ ___Background ~106% d.o.f.

ke

Lk .
-
g
e

3D-Var Analysis: doesn’t know
about the errors of the day

Errors of the day: they lie
on a low-dim attractor



Ensemble Kalman Filtering 1s efficient because
matrix operations are performed in the low-dimensional
space of the ensemble perturbations

Ensemble Kalman Filter Analysis:
correction computed in the low dim
ensemble space

Observations ~1057 d.o.f. @~ /,

3D-Var Analysis: doesn’t know
about the errors of the day

~ ] [)5o-8
ﬁEackgmund 10%% d.o.f.

Errors of the day: they lie
on a low-dim attractor



After the EnKF computes the analysis and the analysis error covarian
A, the new ensemble initial perturbations @a, are computed:

k+1 . These perturbations represent the
Z oa 55 a = A analysis error covariance and are
i=1 used as initial perturbations for t

next ensemble forecast

Observations ~10°" d.o.f. @ Background ~106% d.o.f

e

Errors of the day: they lie
on the low-dim attractor




Flow-dependence — a simple example (Miyoshi,2C
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This is not appropriate
This does reflects the flow-dependence.



Extended Kalman Filter (EKF)

-orecast step
X! = Mx;
PP=L_P'L' +Q (derive it)
« Analysis step
x'=x’ +K (y/ —Hx/)
K =P’H'[HP'H' +R]"
P, =[I-KH]P’ =[(P")'+H'R 'H]"
* Using the flow-dependent P'j'* , analysis is expected to be improved

significantly

However, it is computational hugely expensive Pb L; n*n matrix, n~107
computing equation directly is impossible



Ensemble Kalman Filter (EnKF)

PP=L_P'L_"+Q *

P - lz(Xk X)(Xk X) m —> oo

We use the ensemble to estimate

m

1 _ _
Pi”z—K lz(x{—xf)i(xi—xf)f
k=1

L xoxer

Physically,
=“errors of day” are the instabilities of
the background flow. Strong instabilities

have a few dominant shapes Problem left: how to estimate the

(perturbations lie in a low-dimensional analysis error covariance and the
subspace). analysis perturbations?

* |t makes sense to assume that large 1

errors are in similarly low-dimensional P’ = ﬁXfoT

spaces that can be represented by a
low order EnKF.



Ensemble Update: two approaches

1. Perturbed Observations method:

An “ensemble of data assimilations”

= |t has been proven that an
IS required [e g., Burgers et al.
1998). Otherwise P, ., =[I-K, H]P’

is not satisfied.

= Random perturbations are added to the
observations to obtain observations for
each independent cycle

Qo it .
Yi =Y, tnoise

= However, it introduces a source of sampling
errors when perturbing observations.

.:{H = MKE (k)

1 L ., = . —
12(;;‘ —x")(x! = x")
T L k=l

K = Pj’Hf'[HE”H’f' +R]"

£l b
X u:k; + K, {}Fr{ﬁ} _fom}

k)



Ensemble Update: two approaches

2. Ensemble square root filter

(EnSRF)
« Observations are assimilated to X, = Mx;_,
update only the ensemble mean. pro 1 i{f _PY =)
- i K -1 = & k

a _|’J o _.E:- . _ o
X, =X, + Kf-(}rf HH.J- ) Ka _ EnH,' [I‘I.EHHI +R] |
= Assume analysis ensemble

a b o b
‘=x'+K.(y' - Hx
perturbations can be formed by X; =X, (Y, X;)

er &
transforming the forecast ensemble X; =TX,
pertl.frbatlnns through a transform x* = x° + X°
matrix
1 ; 1 . o
o XX =P, =I-KHIP =[I-KH] — X'X" ¥ X*=TX"




Several choices of the transform matrix

» EnSRF, Andrews 1968, Whitaker and Hamill, 2002)

X‘=I-KH)X’ K=0K +—_
» EAKF (Anderson 2001) “—
X* = AX"
» ETKF (Bishop et al. 2001)
X =X"T

» LETKF (Hunt, 2005)

Based on ETKF but perform analysis
simultaneously in a local volume
surrounding each grid point




An Example of the analysis corrections
3D-Var (Kalnay, 2004)

An example with the QG system (Corazza et al. 2003)

Background error (color) and 3D-Va_r analysis cq;:rrectimn (conto

= W 1% 20 23 0 N 4 49 W e B0 62



An Example of the analysis corrections from
EnKF (Kalnay, 2004)

QG model example of Local Ensemble KF (Corazza et al)

Background error (color) and LEKF analysis correction
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The LEKF does better because it captures the errors of the day



ILocal Ensemble Transtform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(Start with initial ensemble)

Observations

l

Observation | ensemble

operator “observations

I ensemble [analyses

ensemble forecasts

Model

* Model independent
(black box)

* Obs. assimilated
simultaneously at each
grid point

* 100% parallel: fast

* No adjoint needed

* 4D LETKF extension



Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

The LETKF algorithm can be described in a single slide



Local Ensemble Transform Kalman Filter (LETKF)

Globally:
b a
Forecaststep: X, =M, (Xn—l,k
Analysis step: construct b _ | 0 _ %P b _gb .
y P X —|:X1—X l...Ix, —X ],

y =HX) Y, =]y =¥ 1.1y, =" |

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

P =[(K-DI+Y"RY | ; W =[(K - )P']"”

Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and add to W¢“ to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

X! = XiW“ +X” . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W* and perturbation analysis matrices of weights W¢. These
weights multiply the ensemble forecasts.



Repeat: LETKF, globally, with notes (4D-LETKF)

Globally:

Forecast step: =M ( n- lk)
Analysis step: construct Xb:[x — |X — ]
y, —H(x)Y” ¥ =Yl lye =¥
Notes: P’ = XX

Y’ = HX", but it is computed nonlinearly

4D-LETKF is done by simply concatenating in the vertical the
vectors y°, ¥~ and matrix Y? valid at different times in the
assimilation window. The rest is the same.



Repeat: LETKF, locally, with notes

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

-1

P=[(K-DI+Y"RY" | ; W'=[(K-DP]"

Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and addto W to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

X4 = XzW“ + X’ . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W and perturbation analysis matrices of weights W% These
weights multiply the ensemble forecasts.

Notes: P*=[(K-1)I+Y"R'Y'] is P'=[P"'+HR'H]
in ensemble space, where P’ =1/(K —1) is the unit matrix/(K-1)!

Note that here, the columns of X“are the full analysis
ensemble members (not the perturbations).



Implication of getting analysis weights analysis time weights

4D-LETKF

tn -1 tlme tn

The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time t_, giving the trajectory that best fits all
the observations in the assimilation window.



A linear comb. of trajectories is ~a trajectory. If it is close o |
to the truth at the end it should be close to the truth analysis time weights
throughout the trajectory (neglecting model errors). l

4D-LETKF

time t

The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time t_, giving the trajectory that best fits all
the observations in the assimilation window.



No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

tn—l tlme tn

The no-cost smoother makes possible:
v’ Outer loop (like in 4D-Var)

v “Running in place” (faster spin-up)

v Use of future data in reanalysis

v" Ability to use longer windows



No-cost LETKF smoother
tested on a QG model: It works!

Analysis error of potential vorticity

LETKEF analysis _ < X
. Xa =X + Wa 0016
at time n n n non LETKF Analysis

Smoother analysis _, @
od - I ¢
at time n-1 X1 =X F Xn—lw

n

“Smoother” reanalysis

RMS Error

This very simple smoother allows us to go back

and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis



Example: forecast sensitivity to observations

Liu, Hong and Kalnay, in preparation
e

€6 o
€, Cio = ;J|Co - X,
BS (Adapted from Langland
' and Baker, 2004)
-6hr  QOhr analysis t

The only difference between €, ,and €, _gis the assimilation of observations at 00hr.

» Observation impact on the reduction of forecast error:

> T T
Ae” = (e, €, — €, €, )



Example: forecast sensitivity to observations

e —
> T T T T
Ae” = (e e, —€, €, .)=(e,—€ )e,+e, ;)

T
(Xno — X, ) (€, 1€, )

= [M(X — X, 6)]T (e, +¢€,), so that

Ae = I:MK(y — H(X8|_6):|T (etIO T et|—6)

Langland and Baker (2004) solve this with the adjoint:
T
Ae’ =| MK(y— H(x} o) | (e,0+€,.)

= [(y — H(Xg|—6)]T K'M' (€, t€,)

This requires the adjoint of the model and of the data
assimilation system (Langland and Baker, 2004)



Example: forecast sensitivity to observations

Langland and Baker (2004):
T
Ae’ =| MK(y— H(x} o) | (e,0+€,.)

= [(y — H(Xg|—6)]T K'M' (€, t€,)

With EnKF we can use the original equation without “adjointing”:
Recall that K=P‘H' R = X°X“H'R™" so that we can write

MK = MX“(X“H")R' =X/ Y"R™ 5o that

A62 = I:MK(y — H(Xg|_6):|[ (etl() T et|—6)

) T
= I:X{lOYgTR l(y - H(X€|_6)] (€ +€,5)

This is a simple product using the available nonlinear forecast
ensemble X’/ and Y, =(HP")

t10



Test ability to detect the poor quality observation on
the Lorenz 40 variable model

e
Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
0.025 0.025
0.02 1 0.02 1
0.015 1 0.0715 1
0.01 4 0.01 A
0.005 1 0.005 A

—0.005 +4AY ~0.005 Ay
—0.011 —0.071 1
~0.015- ~0.015-
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
grid points grid points

v’ Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11t observation location)

v The ensemble sensitivity method has a stronger signal when the observation has
negative impact on the forecast.



Test ability to detect poor quality observation for
different forecast lengths

T
Larger random error Biased observation case

biased case 2 days \/ After 2-dayS the

o LB (grey), lghrllge(glgirll()j,or%s?c”]g;gth: 2 days o LB (grey), EM (black), fcst length: o
N | adjoint has the wrong
sensitivity sign!
v The ensemble
0.024 0.02 agn m
. S e e e 8 e e o S el I O MO, o o U e s SenSItIVIty methOd haS

a strong signal even

—-0.02 1 —-0.02 1

after forecast error has
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 4C
saturated!
LB o ot ST st 5 5 days EM oo S0, length: 5 d larger random error 20 days biased case
08 (grey). (black), fest length: a 0B (grey), (black), fest length: ays LB (grey), EM (black), fest length: 2( y (grey), EM (black), fest length: 20 days
: . 1o
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How can we possibly detect bad observations even
after all skill is lost?7??

20 days
larger random error

LB (grey), EM (black), fest length: 20 days

biased case
LB (grey), EM (black), fest length: 20 days
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Error made by using the -6hr
weights in the forecasts

.......... N
kAT R A R K A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Forecast length (day)

Mean Square Error of the -6hr weighted forecasts (diamonds),
MSE of the Ohr ensemble mean (circles) and MS Difference
between ensemble mean and weighted forecasts (triangles).

v’ After 20-days there is no
forecast skill but the
ensemble sensitivity still
detects the wrong
observation.

v' The ensemble sensitivity
is based on the assumption
that the analysis weights
can be used in the
forecasts. This is accurate
even after forecast error
has saturated (triangles).

v' As a result we can
identify a bad observation
even after forecast skill is
lost.



Summary

EnKF is simple, does not require linear tangent
model or adjoint of either the model M or the forward
operator H

There are two types of EnKF: perturbed observations
(e.g., Evensen, Houtekamer), and Square Root Filter
(e.g., Whitaker and Hamill, Anderson, Bishop). These
assimilate one obs at a time.

The LETKF (Hunt et al.) is a SQRF done locally in
space: the analysis and analysis perturbations are
weighted averages of the ensemble forecasts.

This makes possible a “no cost smoother”.

EnKF calculates exactly P2 (the Hessian!), and the
Kalman gain matrix K. This makes possible to
compute longer forecasts sensitivity to observations.



